Eine der größten Herausforderungen in der Produktentwicklung von Industrieunternehmen moderner Volkswirtschaften liegt in den hohen Voraussetzungen an Produktqualität und -zuverlässigkeit in Kombination mit zeitlichem Druck bei Planung und Produktion. Mögliche Abweichungen von Produktionsstandards sollten daher in frühen Designstadien festgestellt werden.Die Auswahl passender Modellierungsansätze sowie das Treffen geeigneter Annahmen sind von zentraler Bedeutung für die Zuverlässigkeitsanalyse moderner Industrieunternehmen.Diese Arbeit soll zur Grundlagenforschung dieser Disziplin beitragen und beschäftigt sich mit der Applikation von Bayes'schen Netzen (BN) als Schätzmethode von Systemzuverlässigkeiten.Ziel ist es erklärende Faktoren wie e...
This paper reviews the use of Bayesian Networks (BNs) in predicting software defects and software re...
Plant and system operators are looking for reliable products meeting high technical requirements whi...
Abstract: We present a new Bayesian network modeling that learns the behavior of an unknown system f...
In this paper a framework to predict the remaining lifetime for existing waterways infrastructures b...
International audienceThis paper presents a procedure for failure prognostic by using Dynamic Bayesi...
Capital-intensive industries are under increasing pressure from capital constraints to extend the li...
Nowadays, increasingly complex systems are critical due to the sectors and enterprises which they su...
International audienceIn this paper, a data-driven method for remaining useful life (RUL) prediction...
The Cutty Sark is undergoing major conservation to slow down the deterioration of the original Victo...
Standard practice in building models in software engineering normally involves three steps: collecti...
Reliability prediction is crucial for aircraft maintenance and spare part inventory decisions. These...
Testing the reliability of Smart Power semiconductor devices is highly time and cost consuming. Neve...
Pour maintenir leur compétitivité, les industries du semi-conducteur doivent être en mesure de produ...
The maintenance optimization of complex systems is a key question. One important objective is to be ...
International audiencePrediction of the remaining useful life (RUL) of critical components is a non-...
This paper reviews the use of Bayesian Networks (BNs) in predicting software defects and software re...
Plant and system operators are looking for reliable products meeting high technical requirements whi...
Abstract: We present a new Bayesian network modeling that learns the behavior of an unknown system f...
In this paper a framework to predict the remaining lifetime for existing waterways infrastructures b...
International audienceThis paper presents a procedure for failure prognostic by using Dynamic Bayesi...
Capital-intensive industries are under increasing pressure from capital constraints to extend the li...
Nowadays, increasingly complex systems are critical due to the sectors and enterprises which they su...
International audienceIn this paper, a data-driven method for remaining useful life (RUL) prediction...
The Cutty Sark is undergoing major conservation to slow down the deterioration of the original Victo...
Standard practice in building models in software engineering normally involves three steps: collecti...
Reliability prediction is crucial for aircraft maintenance and spare part inventory decisions. These...
Testing the reliability of Smart Power semiconductor devices is highly time and cost consuming. Neve...
Pour maintenir leur compétitivité, les industries du semi-conducteur doivent être en mesure de produ...
The maintenance optimization of complex systems is a key question. One important objective is to be ...
International audiencePrediction of the remaining useful life (RUL) of critical components is a non-...
This paper reviews the use of Bayesian Networks (BNs) in predicting software defects and software re...
Plant and system operators are looking for reliable products meeting high technical requirements whi...
Abstract: We present a new Bayesian network modeling that learns the behavior of an unknown system f...