Object detection is a fundamental goal to achieve intelligent visual perception by computers due to the fact that objects are the basic building blocks to achieve higher level image understanding. Among the numerous categories of objects in the real-world, pedestrians are among the most important due to several potential benefits brought about by successful pedestrian detection. Often, pedestrian detectors are trained in state-of-the-art systems using supervised machine learning algorithms which necessitates costly and often tedious manual annotation of pedestrians in the form of precise bounding boxes. In this paper, a novel weakly supervised learning algorithm is proposed to train a pedestrian detector that requires, instead of bounding b...