Monotone grid classes of permutations have proven very effective in helping to determine structural and enumerative properties of classical permutation pattern classes. Associated with grid class Grid(M) is a graph, G(M), known as its "row-column" graph. We prove that the exponential growth rate of Grid(M) is equal to the square of the spectral radius of G(M). Consequently, we utilize spectral graph theoretic results to characterise all slowly growing grid classes and to show that for every γ ≥ 2 + √5 there is a grid class with growth rate arbitrarily close to γ. To prove our main result, we establish bounds on the size of certain families of tours on graphs. In the process, we prove that the family of tours of even length on a connected gr...