We obtain an implicit equation for the correlation dimension D2 of dynamical systems in terms of an integral over a propagator. We illustrate the utility of this approach by evaluating D2 for inertial particles suspended in a random flow. In the limit where the correlation time of the flow field approaches zero, taking the short-time limit of the propagator enables D2 to be determined from the solution of a partial differential equation. We develop the solution as a power series in a dimensionless parameter which represents the strength of inertial effects
The success of current attempts to distinguish between low-dimensional chaos and random behavior in ...
We study the motion of small particles in a random turbulent. flow assuming a linear law of friction...
An estimator of the correlation dimension is proposed based on $ mathrm{U} $-statistics, and compare...
We obtain an implicit equation for the correlation dimension which describes cluster- ing of inertia...
In turbulence, ideas of energy cascade and energy flux, substantiated by the exact Kolmogorov relati...
We consider the trajectories of particles suspended in a randomly moving fluid. If the Lyapunov expo...
A derivative of the Lotka-Volterra reaction diffusion mechanism was discussed using the framework of...
Gas-solid flows are nonlinear systems. Therefore state-space analysis, a tool developed within the f...
The motion of an inertial particle in a Gaussian random field is studied. This is a model for the ph...
A theoretical treatment of diffusion as function of turbulence, by working out the dispersion of sma...
This paper is concerned with the generic form of space–time correlations of instantaneous velocity f...
23 pages, 8 figuresA linear dynamical model for the development of the turbulent energy cascade was ...
The success of current attempts to distinguish between low-dimensional chaos and random behavior in ...
In nature, suspensions of small particles in fluids are common. An important example are rain drople...
International audienceTurbulence is a ubiquitous phenomenon in natural and industrial flows. Since t...
The success of current attempts to distinguish between low-dimensional chaos and random behavior in ...
We study the motion of small particles in a random turbulent. flow assuming a linear law of friction...
An estimator of the correlation dimension is proposed based on $ mathrm{U} $-statistics, and compare...
We obtain an implicit equation for the correlation dimension which describes cluster- ing of inertia...
In turbulence, ideas of energy cascade and energy flux, substantiated by the exact Kolmogorov relati...
We consider the trajectories of particles suspended in a randomly moving fluid. If the Lyapunov expo...
A derivative of the Lotka-Volterra reaction diffusion mechanism was discussed using the framework of...
Gas-solid flows are nonlinear systems. Therefore state-space analysis, a tool developed within the f...
The motion of an inertial particle in a Gaussian random field is studied. This is a model for the ph...
A theoretical treatment of diffusion as function of turbulence, by working out the dispersion of sma...
This paper is concerned with the generic form of space–time correlations of instantaneous velocity f...
23 pages, 8 figuresA linear dynamical model for the development of the turbulent energy cascade was ...
The success of current attempts to distinguish between low-dimensional chaos and random behavior in ...
In nature, suspensions of small particles in fluids are common. An important example are rain drople...
International audienceTurbulence is a ubiquitous phenomenon in natural and industrial flows. Since t...
The success of current attempts to distinguish between low-dimensional chaos and random behavior in ...
We study the motion of small particles in a random turbulent. flow assuming a linear law of friction...
An estimator of the correlation dimension is proposed based on $ mathrm{U} $-statistics, and compare...