There are five possible structures for a set of three lines of a Steiner triple system. Each of these three-line ``configurations'' gives rise to a colouring problem in which a partition of all the lines of an STS($v$) is sought, the components of the partition each having the property of not containing any copy of the configuration in question. For a three-line configuration $B$, and STS($v$) $S$, the minimum number of classes required is denoted by $\chi(B,S)$ and is called the $B$-chromatic index of $S$. This generalises the ordinary chromatic index $\chi'(S)$ and the 2-parallel chromatic index $\chi''(S)$. (For the latter see \cite{DGGR}.) In this paper we obtain results concerning $\underline\chi(B,v)=\min\{\chi(B,S):S \mbox{ is an STS...
AbstractIn this paper we present some new construction of 3-chromatic STS(v) by means of MTP(w)
A Steiner triple system has a bicoloring with m color classes if the points are partitioned into m s...
ABSTRACT. The number of colors needed to colour the blocks of a cyclic Steiner 2-design S(2, k, v) i...
In a Steiner triple system of order v, STS(v), a set of three lines intersecting pairwise in three d...
A Steiner triple system, STS(v), is said to be χ-chromatic if the points can be coloured using χ col...
It has been conjectured that every Steiner triple system of order v 6= 7 has chromatic index at most...
AbstractIt is well known that a Steiner triple system (STS) on v points, an STS(v), can be seen as a...
Abstract. We complete the determination of the chromatic number of 6valent circulants of the form C(...
A Steiner triple system of order v (STS(v)) is called x-chromatic if x is the smallest number of col...
AbstractWe investigate the largest number of colours, called upper chromatic number and denoted X(H)...
Properties of the 11 084 874 829 Steiner triple systems of order 19 are examined. In particular, the...
A Steiner triple system (STS(v)) is said to be 3-balanced if every 3-colouring of it is equitable; t...
ABSTRACT. The number of colors needed to colour the blocks of a cyclic Steiner 2-design S(2, k, v) i...
AbstractIt is well known that a Steiner triple system (STS) on v points, an STS(v), can be seen as a...
AbstractThe concept of star chromatic number of a graph, introduced by Vince (1988) is a natural gen...
AbstractIn this paper we present some new construction of 3-chromatic STS(v) by means of MTP(w)
A Steiner triple system has a bicoloring with m color classes if the points are partitioned into m s...
ABSTRACT. The number of colors needed to colour the blocks of a cyclic Steiner 2-design S(2, k, v) i...
In a Steiner triple system of order v, STS(v), a set of three lines intersecting pairwise in three d...
A Steiner triple system, STS(v), is said to be χ-chromatic if the points can be coloured using χ col...
It has been conjectured that every Steiner triple system of order v 6= 7 has chromatic index at most...
AbstractIt is well known that a Steiner triple system (STS) on v points, an STS(v), can be seen as a...
Abstract. We complete the determination of the chromatic number of 6valent circulants of the form C(...
A Steiner triple system of order v (STS(v)) is called x-chromatic if x is the smallest number of col...
AbstractWe investigate the largest number of colours, called upper chromatic number and denoted X(H)...
Properties of the 11 084 874 829 Steiner triple systems of order 19 are examined. In particular, the...
A Steiner triple system (STS(v)) is said to be 3-balanced if every 3-colouring of it is equitable; t...
ABSTRACT. The number of colors needed to colour the blocks of a cyclic Steiner 2-design S(2, k, v) i...
AbstractIt is well known that a Steiner triple system (STS) on v points, an STS(v), can be seen as a...
AbstractThe concept of star chromatic number of a graph, introduced by Vince (1988) is a natural gen...
AbstractIn this paper we present some new construction of 3-chromatic STS(v) by means of MTP(w)
A Steiner triple system has a bicoloring with m color classes if the points are partitioned into m s...
ABSTRACT. The number of colors needed to colour the blocks of a cyclic Steiner 2-design S(2, k, v) i...