AbstractA Yosida frame is an algebraic frame in which every compact element is a meet of maximal elements. Yosida frames are used to abstractly characterize the frame of z-ideals of a ring of continuous functions C(X), when X is a compact Hausdorff space. An algebraic frame in which the meet of any two compact elements is compact is Yosida precisely when it is “finitely subfit”; that is, if and only if for each pair of compact elements a<b, there is a z (not necessarily compact) such that a∨z<1=b∨z. This is used to prove that if L is an algebraic frame in which the meet of any two compact elements is compact, and L has disjointification and dim(L)=1, then it is Yosida. It is shown that this result fails with almost any relaxation of the hyp...