AbstractThis article presents several new constructions of infinite families of smooth 4-manifolds with the property that any two manifolds in the same family are homeomorphic. While the construction gives strong evidence that any two of these manifolds of are not diffeomorphic, they cannot be distinguished by Seiberg–Witten invariants. Whether these manifolds are, or are not, diffeomorphic seems to be a very difficult question to answer. For one of these constructions, each member of the family is symplectic with the further property that each contains nullhomologous tori with the property that infinitely many log transformations on these tori yield nonsymplectic 4-manifolds. This is detected by calculations of Seiberg–Witten invariants. T...