AbstractCombining Baker's effective method with the reduction procedure of Baker and Davenport, we give an algorithm for the complete resolution of index form equations corresponding to totally real cyclic biquadratic number fields. The solutions make it possible to construct all power integral bases of these fields. The method can be modified to be applicable also to other types of decomposable form equations
Finding integer solutions to norm form equations is a classical Diophantine problem. Using the units...
The index of an integral element $\alpha$ in a number field $K$ with discriminant $D_K$ is the index...
AbstractWe develop an algorithm for computing all generators of relative power integral bases in qua...
AbstractCombining Baker's effective method with the reduction procedure of Baker and Davenport, we g...
AbstractIn this paper we develop a method for computing all small solutions (i.e. with coordinates o...
AbstractLet m, n be distinct square-free rational integers and let K=Q(√m, √n). Combining Baker-type...
AbstractLet m, n be distinct square-free rational integers and let K=Q(√m, √n). Combining Baker-type...
In this paper we find a minimal index and determine all integral elements with the minimal index in ...
In this paper we find a minimal index and determine all integral elements with the minimal index in ...
AbstractWe describe an efficient algorithm for solving index form equations in number fields of degr...
AbstractIn this paper we reduce the problem of solving index form equations in quartic number fields...
We provide a comprehensive description of biquadratic function fields and their properties, includi...
AbstractWe give an efficient algorithm for the resolution of index form equations, especially for de...
ZusammenfassungLet K be an algebraic number field with non-zero α, β∈K. Siegel showed in 1929 that t...
AbstractWe describe an efficient algorithm for solving index form equations in number fields of degr...
Finding integer solutions to norm form equations is a classical Diophantine problem. Using the units...
The index of an integral element $\alpha$ in a number field $K$ with discriminant $D_K$ is the index...
AbstractWe develop an algorithm for computing all generators of relative power integral bases in qua...
AbstractCombining Baker's effective method with the reduction procedure of Baker and Davenport, we g...
AbstractIn this paper we develop a method for computing all small solutions (i.e. with coordinates o...
AbstractLet m, n be distinct square-free rational integers and let K=Q(√m, √n). Combining Baker-type...
AbstractLet m, n be distinct square-free rational integers and let K=Q(√m, √n). Combining Baker-type...
In this paper we find a minimal index and determine all integral elements with the minimal index in ...
In this paper we find a minimal index and determine all integral elements with the minimal index in ...
AbstractWe describe an efficient algorithm for solving index form equations in number fields of degr...
AbstractIn this paper we reduce the problem of solving index form equations in quartic number fields...
We provide a comprehensive description of biquadratic function fields and their properties, includi...
AbstractWe give an efficient algorithm for the resolution of index form equations, especially for de...
ZusammenfassungLet K be an algebraic number field with non-zero α, β∈K. Siegel showed in 1929 that t...
AbstractWe describe an efficient algorithm for solving index form equations in number fields of degr...
Finding integer solutions to norm form equations is a classical Diophantine problem. Using the units...
The index of an integral element $\alpha$ in a number field $K$ with discriminant $D_K$ is the index...
AbstractWe develop an algorithm for computing all generators of relative power integral bases in qua...