AbstractA groupoid identity is said to be linear of length 2k if the same k variables appear on both sides of the identity exactly once. We classify and count all varieties of groupoids defined by a single linear identity. For k=3, there are 14 nontrivial varieties and they are in the most general position with respect to inclusion. Hentzel et al. [Hentzel, I.R., Jacobs, D.P., Muddana, S.V., 1993. Experimenting with the identity (xy)z=y(zx). J. Symbolic Comput. 16, 289–293] showed that the linear identity (xy)z=y(zx) implies commutativity and associativity in all products of at least five factors. We complete their project by showing that no other linear identity of any length behaves this way, and by showing how the identity (xy)z=y(zx) af...