AbstractThis paper deals with properties of a Cohen-Macaulay ideal I in a regular local ring R. We consider two main kinds of ideals: strongly Cohen-Macaulay ideals and ideals with sliding depth. One of our aims is to sharpen their differences. We also examine certain kinds of normal ideals and consider ways of determining the divisor class group and the canonical module of its Rees algebra. We show that the divisor class group of R(I) is a finitely generated free abelian group. The main results of this work are certain numerical constraints that are shown to exist on the projective resolutions of graded ideals with Cohen-Macaulay Koszul homology
AbstractSuppose (R, m) is a Cohen-Macaulay local ring of dimension d≥2 and I is an ideal of R genera...
AbstractAccess to the defining equations of blowup algebras is a natural pathway to the study of the...
Let R be a commutative, Noetherian, local ring and M a finitely generated R-module. Consider the mod...
AbstractThis paper deals with properties of a Cohen-Macaulay ideal I in a regular local ring R. We c...
Cohen-Macaulayness of Rees algebras and associated graded rings of ideals has been actively investig...
We study the Cohen-Macaulay property of Rees algebras of modules of K¨ahler differentials. When the ...
We study the Cohen-Macaulay property of Rees algebras of modules of K¨ahler differentials. When the ...
AbstractSeveral spectral sequence techniques are used in order to derive information about the struc...
Let k be a field and R a standard graded k-algebra. We denote by HR the homology algebra of the Kosz...
AbstractSuppose (R, m) is a Cohen-Macaulay local ring of dimension d≥2 and I is an ideal of R genera...
In this thesis, we investigate some open questions involving tight closure and big Cohen-Macaulay al...
Let R be a homogeneous Cohen-Macaulay algebra over a field, and let I be an ideal generated by a hom...
AbstractThe reductions of an ideal I give a natural pathway to the properties of I, with the advanta...
Let R be a commutative, Noetherian, local ring and M a finitely generated R-module. Consider the mod...
In this thesis, we investigate some open questions involving tight closure and big Cohen-Macaulay al...
AbstractSuppose (R, m) is a Cohen-Macaulay local ring of dimension d≥2 and I is an ideal of R genera...
AbstractAccess to the defining equations of blowup algebras is a natural pathway to the study of the...
Let R be a commutative, Noetherian, local ring and M a finitely generated R-module. Consider the mod...
AbstractThis paper deals with properties of a Cohen-Macaulay ideal I in a regular local ring R. We c...
Cohen-Macaulayness of Rees algebras and associated graded rings of ideals has been actively investig...
We study the Cohen-Macaulay property of Rees algebras of modules of K¨ahler differentials. When the ...
We study the Cohen-Macaulay property of Rees algebras of modules of K¨ahler differentials. When the ...
AbstractSeveral spectral sequence techniques are used in order to derive information about the struc...
Let k be a field and R a standard graded k-algebra. We denote by HR the homology algebra of the Kosz...
AbstractSuppose (R, m) is a Cohen-Macaulay local ring of dimension d≥2 and I is an ideal of R genera...
In this thesis, we investigate some open questions involving tight closure and big Cohen-Macaulay al...
Let R be a homogeneous Cohen-Macaulay algebra over a field, and let I be an ideal generated by a hom...
AbstractThe reductions of an ideal I give a natural pathway to the properties of I, with the advanta...
Let R be a commutative, Noetherian, local ring and M a finitely generated R-module. Consider the mod...
In this thesis, we investigate some open questions involving tight closure and big Cohen-Macaulay al...
AbstractSuppose (R, m) is a Cohen-Macaulay local ring of dimension d≥2 and I is an ideal of R genera...
AbstractAccess to the defining equations of blowup algebras is a natural pathway to the study of the...
Let R be a commutative, Noetherian, local ring and M a finitely generated R-module. Consider the mod...