AbstractWe associate to each infinite primitive Lie pseudogroup a Hopf algebra of ‘transverse symmetries,’ by refining a procedure due to Connes and the first author in the case of the general pseudogroup. The affiliated Hopf algebra can be viewed as a ‘quantum group’ counterpart of the infinite-dimensional primitive Lie algebra of the pseudogroup. It is first constructed via its action on the étale groupoid associated to the pseudogroup, and then realized as a bicrossed product of a universal enveloping algebra by a Hopf algebra of regular functions on a formal group. The bicrossed product structure allows to express its Hopf cyclic cohomology in terms of a bicocyclic bicomplex analogous to the Chevalley–Eilenberg complex. As an applicatio...