AbstractFor topological products the concept of canonical subbase-compactness is introduced, and the question analyzed under what conditions such products are canonically subbase-compact in ZF-set theory.Results: (1) Products of finite spaces are canonically subbase-compact iff AC(fin), the axiom of choice for finite sets, holds.(2) Products of n-element spaces are canonically subbase-compact iff AC(<n), the axiom of choice for sets with less than n elements, holds.(3) Products of compact spaces are canonically subbase-compact iff AC, the axiom of choice, holds.(4) All powers XI of a compact space X are canonically subbase compact iff X is a Loeb-space.These results imply that in ZF the implicationscompact⇒canonically subbase-compact⇒subbas...