AbstractGraham and Lehrer have defined cellular algebras and developed a theory that allows in particular to classify simple representations of finite dimensional cellular algebras. Many classes of finite dimensional algebras, including various Hecke algebras and diagram algebras, have been shown to be cellular, and the theory due to Graham and Lehrer successfully has been applied to these algebras.We will extend the framework of cellular algebras to algebras that need not be finite dimensional over a field. Affine Hecke algebras of type A and infinite dimensional diagram algebras like the affine Temperley–Lieb algebras are shown to be examples of our definition. The isomorphism classes of simple representations of affine cellular algebras ...