AbstractLet X be a Tychonoff space, H(X) the group of all self-homeomorphisms of X and e:(f,x)∈H(X)×X→f(x)∈X the evaluation function. Call an admissible group topology on H(X) any topological group topology on H(X) that makes the evaluation function a group action. Denote by LH(X) the upper-semilattice of all admissible group topologies on H(X) ordered by the usual inclusion. We show that if X is a product of zero-dimensional spaces each satisfying the property: any two non-empty clopen subspaces are homeomorphic, then LH(X) is a complete lattice. Its minimum coincides with the clopen–open topology and with the topology of uniform convergence determined by a T2-compactification of X to which every self-homeomorphism of X continuously extend...