AbstractConfounding is a major concern in epidemiology. Despite its significance, the different notions of confounding have not been fully appreciated in the literature, leading to confusion of causal concepts in epidemiology. In this article, we aim to highlight the importance of differentiating between the subtly different notions of confounding from the perspective of counterfactual reasoning. By using a simple example, we illustrate the significance of considering the distribution of response types to distinguish causation from association, highlighting that confounding depends not only on the population chosen as the target of inference, but also on the notions of confounding in distribution and confounding in measure. This point has b...