AbstractPoisson approximation in total variation can be successfully established in a wide variety of contexts, involving sums of weakly dependent random variables which usually take the value 0, and occasionally the value 1. If the random variables can take other positive integer values, or if there is stronger dependence between them, compound Poisson approximation may be more suitable. Stein's method, which is so effective in the Poisson context, turns out to be much more difficult to apply for compound Poisson approximation, because the solutions of the Stein equation have undesirable properties. In this paper, we prove new bounds on the absolute values of the solutions to the Stein equation and of their first differences, over certain ...