AbstractThis work considers the problem of reconstructing a phylogenetic tree from triplet-dissimilarities, which are dissimilarities defined over taxon-triplets. Triplet-dissimilarities are possibly the simplest generalization of pairwise dissimilarities, and were used for phylogenetic reconstructions in the past few years. We study the hardness of finding a tree best fitting a given triplet-dissimilarity table under the ℓ∞ norm. We show that the corresponding decision problem is NP-hard and that the corresponding optimization problem cannot be approximated in polynomial time within a constant multiplicative factor smaller than 1.4. On the positive side, we present a polynomial time constant-rate approximation algorithm for this problem. W...
The study of phylogenetic networks is of great interest to computational evolutionary biology and nu...
Interpreting three-leaf binary trees or rooted triples as constraints yields an entailment relation,...
We study the parameterized complexity of inferring supertrees from sets of rooted triplets, an impor...
AbstractThis work considers the problem of reconstructing a phylogenetic tree from triplet-dissimila...
AbstractA set of phylogenetic trees with overlapping leaf sets is consistent if it can be merged wit...
Several computational problems in phylogenetic reconstruction can beformulated as restrictions of th...
Abstract. We study the evolutionary tree construction from rooted triplets from the viewpoint of app...
We combine two fundamental, previously studied optimization problems related to the construction of ...
A set of phylogenetic trees with overlapping leaf sets is consistent if it can be merged without con...
A set of phylogenetic trees with overlapping leaf sets is consistent if it can be merged without con...
We systematically study the computational complexity of a broad class of computational problemsin ph...
AbstractThe study of phylogenetic networks is of great interest to computational evolutionary biolog...
The evolutionary history of certain species such as polyploids are modeled by a generalization of ph...
Warning: this manuscript is outdated. Results of Section 2 have been improved and appeared in our ar...
We study the approximability of a broad class of computational problems -- originally motivated in e...
The study of phylogenetic networks is of great interest to computational evolutionary biology and nu...
Interpreting three-leaf binary trees or rooted triples as constraints yields an entailment relation,...
We study the parameterized complexity of inferring supertrees from sets of rooted triplets, an impor...
AbstractThis work considers the problem of reconstructing a phylogenetic tree from triplet-dissimila...
AbstractA set of phylogenetic trees with overlapping leaf sets is consistent if it can be merged wit...
Several computational problems in phylogenetic reconstruction can beformulated as restrictions of th...
Abstract. We study the evolutionary tree construction from rooted triplets from the viewpoint of app...
We combine two fundamental, previously studied optimization problems related to the construction of ...
A set of phylogenetic trees with overlapping leaf sets is consistent if it can be merged without con...
A set of phylogenetic trees with overlapping leaf sets is consistent if it can be merged without con...
We systematically study the computational complexity of a broad class of computational problemsin ph...
AbstractThe study of phylogenetic networks is of great interest to computational evolutionary biolog...
The evolutionary history of certain species such as polyploids are modeled by a generalization of ph...
Warning: this manuscript is outdated. Results of Section 2 have been improved and appeared in our ar...
We study the approximability of a broad class of computational problems -- originally motivated in e...
The study of phylogenetic networks is of great interest to computational evolutionary biology and nu...
Interpreting three-leaf binary trees or rooted triples as constraints yields an entailment relation,...
We study the parameterized complexity of inferring supertrees from sets of rooted triplets, an impor...