AbstractArtemov's logic of proofs LP is a complete calculus of propositions and proofs, which is now becoming a foundation for the evidence-based approach to reasoning about knowledge. Additional atoms in LP have form t:F, read as “t is a proof of F” (or, more generally, as “t is an evidence for F”) for an appropriate system of terms t called proof polynomials. In this paper, we answer two well-known questions in this area. One of the main features of LP is its ability to realize modalities in any S4-derivation by proof polynomials thus revealing a statement about explicit evidences encoded in that derivation. We show that the original Artemov's algorithm of building such realizations can produce proof polynomials of exponential length in t...