AbstractFor the general linear scalar time-delay systems of arbitrary order with two delays, this article provides a detailed study on the stability crossing curves consisting of all the delays such that the characteristic quasipolynomial has at least one imaginary zero. The crossing set, consisting of all the frequencies corresponding to all the points in the stability crossing curves, are expressed in terms of simple inequality constraints and can be easily identified from the gain response curves of the coefficient transfer functions of the delay terms. This crossing set forms a finite number of intervals of finite length. The corresponding stability crossing curves form a series of smooth curves except at the points corresponding to mul...