AbstractLet K be any field which may not be algebraically closed, V be a four-dimensional vector space over K, σ∈GL(V) where the order of σ may be finite or infinite, f(T)∈K[T] be the characteristic polynomial of σ. Let α, αβ1, αβ2, αβ3 be the four roots of f(T)=0 in some extension field of K.Theorem 1.BothK(V)〈σ〉andK(P(V))〈σ〉are rational (=purelytranscendental) overKif at least one of the following conditions is satisfied: (i) charK=2, (ii) f(T) is a reducible or inseparable polynomial inK[T], (iii) not all ofβ1,β2,β3are roots of unity, (iv) iff(T) is separable irreducible, then the Galois group off(T) overKis not isomorphic to the dihedral group of order 8 or the Klein four group.Theorem 2.Suppose that allβiare roots of unity andf(T)∈K[T]...