AbstractWe disprove a conjecture of Bultena and Ruskey (Electron. J. Combin. 3 (1996) R11), that all trees which are cyclic graphs of cyclic Gray codes have diameter 2 or 4, by producing codes whose cyclic graphs are trees of arbitrarily large diameter. We answer affirmatively two other questions from (Electron. J. Combin. 3 (1996) R11), showing that strongly Pn×Pn-compatible codes exist and that it is possible for a cyclic code to induce a cyclic digraph with no bidirectional edge. A major tool in these proofs is our introduction of supercomposite Gray codes; these generalize the standard reflected Gray code by allowing shifts. We find supercomposite Gray codes which induce large diameter trees, but also show that many trees are not induce...