AbstractIn 1965 Knuth (J. Algebra 2 (1965) 182) noticed that a finite semifield was determined by a 3-cube array (aijk) and that any permutation of the indices would give another semifield. In this article we explain the geometrical significance of these permutations. It is known that a pair of functions (f,g) where f and g are functions from GF(q) to GF(q) with the property that f and g are linear over some subfield and g(x)2+4xf(x) is a non-square for all x∈GF(q)∗, q odd, give rise to certain semifields, one of which is commutative of rank 2 over its middle nucleus, one of which arises from a semifield flock of the quadratic cone, and another that comes from a translation ovoid of Q(4,q). We show that there are in fact six non-isotopic se...