AbstractThe paper investigates inaccessible set axioms and their consistency strength in constructive set theory. In ZFC inaccessible sets are of the form Vκ where κ is a strongly inaccessible cardinal and Vκ denotes the κth level of the von Neumann hierarchy. Inaccessible sets figure prominently in category theory as Grothendieck universes and are related to universes in type theory. The objective of this paper is to show that the consistency strength of inaccessible set axioms heavily depend on the context in which they are embedded. The context here will be the theory CZF− of constructive Zermelo–Fraenkel set theory but without ∈-Induction (foundation). Let INAC be the statement that for every set there is an inaccessible set containing ...