AbstractWe construct Gauss–Weingarten-like formulas and define O’Neill’s tensors for Riemannian maps between Riemannian manifolds. By using these new formulas, we obtain necessary and sufficient conditions for Riemannian maps to be totally geodesic. Then we introduce semi-invariant Riemannian maps from almost Hermitian manifolds to Riemannian manifolds, give examples and investigate the geometry of leaves of the distributions defined by such maps. We also obtain necessary and sufficient conditions for semi-invariant maps to be totally geodesic and find decomposition theorems for the total manifold. Finally, we give a classification result for semi-invariant Riemannian maps with totally umbilical fibers