AbstractWe construct some cyclic cocycles on the foliation algebra and show that the result of pairing them with a leafwise Dirac operator is a spectral invariant. This leads to a notation of higher eta invariants
In this paper we prove a formula for the analytic index of a basic Dirac-type operator on a Riemanni...
We prove a formula for the multiplicities of the index of an equivariant transversally elliptic oper...
Let G be a discrete finitely generated group. We consider a G- equivariant fibration, with fibers di...
AbstractWe construct some cyclic cocycles on the foliation algebra and show that the result of pairi...
We prove a Godbillon-Vey index formula for longitudinal Dirac operators on a foliated bundle with bo...
We define the higher eta-invariant of a Dirac-type operator on a nonsimply-connected closed manifold...
In this article, we survey the recent constructions of cyclic cocycles on the Harish-Chandra Schwart...
AbstractLet D be a self-adjoint leafwise elliptic operator on a foliated manifold. Compressing multi...
We study primary and secondary invariants of leafwise Dirac operators on foliated bundles. Given suc...
We describe a Godbillon-Vey index formula for longitudinal Dirac operators on a foliated bundle (X, ...
AbstractWe compute the equivariant cohomology Connes–Karoubi character of the index of elliptic oper...
AbstractWe construct a nontrivial cyclic cocycle on the Weyl algebra of a symplectic vector space. U...
arXiv admin note: text overlap with arXiv:1007.3667International audienceGiven a gerbe $L$, on the h...
AbstractThe theory of characteristic classes of foliated bundles is applied to the study of a class ...
AbstractWe prove a close cousin of a theorem of Weinberger about the homotopy invariance of certain ...
In this paper we prove a formula for the analytic index of a basic Dirac-type operator on a Riemanni...
We prove a formula for the multiplicities of the index of an equivariant transversally elliptic oper...
Let G be a discrete finitely generated group. We consider a G- equivariant fibration, with fibers di...
AbstractWe construct some cyclic cocycles on the foliation algebra and show that the result of pairi...
We prove a Godbillon-Vey index formula for longitudinal Dirac operators on a foliated bundle with bo...
We define the higher eta-invariant of a Dirac-type operator on a nonsimply-connected closed manifold...
In this article, we survey the recent constructions of cyclic cocycles on the Harish-Chandra Schwart...
AbstractLet D be a self-adjoint leafwise elliptic operator on a foliated manifold. Compressing multi...
We study primary and secondary invariants of leafwise Dirac operators on foliated bundles. Given suc...
We describe a Godbillon-Vey index formula for longitudinal Dirac operators on a foliated bundle (X, ...
AbstractWe compute the equivariant cohomology Connes–Karoubi character of the index of elliptic oper...
AbstractWe construct a nontrivial cyclic cocycle on the Weyl algebra of a symplectic vector space. U...
arXiv admin note: text overlap with arXiv:1007.3667International audienceGiven a gerbe $L$, on the h...
AbstractThe theory of characteristic classes of foliated bundles is applied to the study of a class ...
AbstractWe prove a close cousin of a theorem of Weinberger about the homotopy invariance of certain ...
In this paper we prove a formula for the analytic index of a basic Dirac-type operator on a Riemanni...
We prove a formula for the multiplicities of the index of an equivariant transversally elliptic oper...
Let G be a discrete finitely generated group. We consider a G- equivariant fibration, with fibers di...