AbstractThe motivation for this paper is threefold. First, we study the connectivity properties of the homomorphism order of directed graphs, and more generally for relational structures. As opposed to the homomorphism order of undirected graphs (which has no non-trivial finite maximal antichains), the order of directed graphs has finite maximal antichains of any size. In this paper, we characterise explicitly all maximal antichains in the homomorphism order of directed graphs.Quite surprisingly, these maximal antichains correspond to generalised dualities. The notion of generalised duality is defined here in full generality as an extension of the notion of finitary duality, investigated in [J. Nešetřil, C. Tardif, Duality theorems for fini...