AbstractThis paper deals with the nonexistence and multiplicity of nonnegative, nontrivial solutions to a class of degenerate and singular elliptic systems of the form{−div(h1(x)∇u)=λFu(x,u,v)in Ω,−div(h2(x)∇v)=λFv(x,u,v)in Ω, where Ω is a bounded domain with smooth boundary ∂Ω in RN, N≧2, and hi:Ω→[0,∞), hi∈Lloc1(Ω), hi (i=1,2) are allowed to have “essential” zeroes at some points in Ω, (Fu,Fv)=∇F, and λ is a positive parameter. Our proofs rely essentially on the critical point theory tools combined with a variant of the Caffarelli–Kohn–Nirenberg inequality in [P. Caldiroli, R. Musina, On a variational degenerate elliptic problem, NoDEA Nonlinear Differential Equations Appl. 7 (2000) 189–199]
For a class of second order quasilinear elliptic equations we establish the existence of two non-neg...
AbstractWe consider the elliptic system Δu=upvq, Δv=urvs in Ω, where p,s>1, q,r>0, and Ω⊂RN is a smo...
The main purpose of this paper is to present recent existence results for an elliptic eigenvalue Dir...
AbstractWe are concerned with existence, nonexistence and multiplicity of nonnegative solutions for ...
AbstractIn this work we deal with the class of critical singular quasilinear elliptic problems in RN...
AbstractSome multiplicity results are presented for the eigenvalue problem(Pλ,μ){−div(|x|−2a∇u)=λ|x|...
AbstractWe prove some existence results of positive bounded continuous solutions to the semilinear e...
In this work we consider existence and multiplicity results of nontrivial solutions for a class of q...
AbstractIn this paper, we prove the existence of infinitely many classical solutions for a class of ...
AbstractIn this article we use variational methods to study a strongly coupled elliptic system depen...
In this work we consider existence and multiplicity results of nontrivial solutions for a class of q...
AbstractWe study the regularity, Palais–Smale characterization and existence/nonexistence of solutio...
AbstractWe prove the existence of nontrivial critical points of the functionalJλ(u)=∫RN1p(||x|−a∇ku|...
AbstractSuperlinear elliptic boundary value problems without Ambrosetti and Rabinowitz growth condit...
AbstractIn connection with the maximizing problem for the functional R(u) = ∥u∥Lq∥▽u∥Lp in W01,p(Ω)β...
For a class of second order quasilinear elliptic equations we establish the existence of two non-neg...
AbstractWe consider the elliptic system Δu=upvq, Δv=urvs in Ω, where p,s>1, q,r>0, and Ω⊂RN is a smo...
The main purpose of this paper is to present recent existence results for an elliptic eigenvalue Dir...
AbstractWe are concerned with existence, nonexistence and multiplicity of nonnegative solutions for ...
AbstractIn this work we deal with the class of critical singular quasilinear elliptic problems in RN...
AbstractSome multiplicity results are presented for the eigenvalue problem(Pλ,μ){−div(|x|−2a∇u)=λ|x|...
AbstractWe prove some existence results of positive bounded continuous solutions to the semilinear e...
In this work we consider existence and multiplicity results of nontrivial solutions for a class of q...
AbstractIn this paper, we prove the existence of infinitely many classical solutions for a class of ...
AbstractIn this article we use variational methods to study a strongly coupled elliptic system depen...
In this work we consider existence and multiplicity results of nontrivial solutions for a class of q...
AbstractWe study the regularity, Palais–Smale characterization and existence/nonexistence of solutio...
AbstractWe prove the existence of nontrivial critical points of the functionalJλ(u)=∫RN1p(||x|−a∇ku|...
AbstractSuperlinear elliptic boundary value problems without Ambrosetti and Rabinowitz growth condit...
AbstractIn connection with the maximizing problem for the functional R(u) = ∥u∥Lq∥▽u∥Lp in W01,p(Ω)β...
For a class of second order quasilinear elliptic equations we establish the existence of two non-neg...
AbstractWe consider the elliptic system Δu=upvq, Δv=urvs in Ω, where p,s>1, q,r>0, and Ω⊂RN is a smo...
The main purpose of this paper is to present recent existence results for an elliptic eigenvalue Dir...