AbstractWe propose in this paper a new normal form for dynamical systems or vector fields which improves the classical normal forms in the sense that it is a further reduction of the classical normal forms. We give an algorithm for an effective computation of these normal forms. Our approach is rational in the sense that if the coefficients of the system are in a field K(which, in practice, is Q, R), so is the normal form and all computations are done inK . As a particular case, if the matrix of the linear part is a companion matrix then we reduce the dynamical system to a single differential equation. Our method is applicable for both the nilpotent and the non-nilpotent cases. We have implemented our algorithm in Maple V and obtained many ...
International audienceA key tool in the study of the dynamics of vector fields near an equilibrium p...
AbstractWe prove that in all but one case the normal form of a real or complex Hamiltonian matrix wh...
AbstractIn this paper a method of computing normal forms for time-independent nonlinear Hamiltonian ...
AbstractWe propose in this paper a new normal form for dynamical systems or vector fields which impr...
AbstractWe propose in this paper a method for obtaining a significant refinement of normal forms for...
AbstractWe propose in this paper a method for obtaining a significant refinement of normal forms for...
AbstractWe offer an algorithm to determine the form of the normal form for a vector field with a nil...
AbstractIn this paper a method of computing a normal form for a system of ordinary differential equa...
AbstractThis paper presents a matching pursuit technique for computing the simplest normal forms of ...
1ABSTRACT: We offer an algorithm to determine the form of the normal form for a vector field with a ...
We review the computational procedures involved in transforming a vector field into a suitable norma...
AbstractA method to obtain formal symmetries of polynomial vector fields with non-null linear part i...
AbstractA key tool in the study of the dynamics of vector fields near an equilibrium point is the th...
AbstractA key tool in the study of the dynamics of vector fields near an equilibrium point is the th...
International audienceA key tool in the study of the dynamics of vector fields near an equilibrium p...
International audienceA key tool in the study of the dynamics of vector fields near an equilibrium p...
AbstractWe prove that in all but one case the normal form of a real or complex Hamiltonian matrix wh...
AbstractIn this paper a method of computing normal forms for time-independent nonlinear Hamiltonian ...
AbstractWe propose in this paper a new normal form for dynamical systems or vector fields which impr...
AbstractWe propose in this paper a method for obtaining a significant refinement of normal forms for...
AbstractWe propose in this paper a method for obtaining a significant refinement of normal forms for...
AbstractWe offer an algorithm to determine the form of the normal form for a vector field with a nil...
AbstractIn this paper a method of computing a normal form for a system of ordinary differential equa...
AbstractThis paper presents a matching pursuit technique for computing the simplest normal forms of ...
1ABSTRACT: We offer an algorithm to determine the form of the normal form for a vector field with a ...
We review the computational procedures involved in transforming a vector field into a suitable norma...
AbstractA method to obtain formal symmetries of polynomial vector fields with non-null linear part i...
AbstractA key tool in the study of the dynamics of vector fields near an equilibrium point is the th...
AbstractA key tool in the study of the dynamics of vector fields near an equilibrium point is the th...
International audienceA key tool in the study of the dynamics of vector fields near an equilibrium p...
International audienceA key tool in the study of the dynamics of vector fields near an equilibrium p...
AbstractWe prove that in all but one case the normal form of a real or complex Hamiltonian matrix wh...
AbstractIn this paper a method of computing normal forms for time-independent nonlinear Hamiltonian ...