AbstractA random recursive tree on n vertices is either a single isolated vertex (for n=1) or is a vertex vn connected to a vertex chosen uniformly at random from a random recursive tree on n−1 vertices. Such trees have been studied before [R. Smythe, H. Mahmoud, A survey of recursive trees, Theory of Probability and Mathematical Statistics 51 (1996) 1–29] as models of boolean circuits. More recently, Barabási and Albert [A. Barabási, R. Albert, Emergence of scaling in random networks, Science 286 (1999) 509–512] have used modifications of such models to model for the web and other “power-law” networks.A minimum (cardinality) dominating set in a tree can be found in linear time using the algorithm of Cockayne et al. [E. Cockayne, S. Goodman...