AbstractLetkbe an algebraic number field. We describe a procedure for computing the Hilbert class fieldΓ(k) ofk, i.e., the maximal abelian extension unramified at all places. In the first part of the paper we outline the underlying theory and in the second part we present the important algorithms and give several examples
AbstractLetkbe a totally real number field of degreenoverQwith ring of integers Ok. The Hilbert modu...
Soit (K, Φ) une paire CM quartique primitive et (Kr , Φr ) son réflexe. Dans un article de 1962 inti...
AbstractLet K be an unramified abelian extension of a number field F with Galois group G. We conside...
AbstractLetkbe an algebraic number field. We describe a procedure for computing the Hilbert class fi...
Let K be a quartic CM field, that is, a totally imaginary quadratic extension of a real quadratic nu...
Let K be a quartic CM field, that is, a totally imaginary quadratic extension of a real quadratic nu...
AbstractA number field K is called a Hilbert–Speiser field if for each tamely ramified finite abelia...
Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelon...
Soit (K, Φ) une paire CM quartique primitive et (Kr , Φr ) son réflexe. Dans un article de 1962 inti...
The determination of the class number of totally real fields of large discriminant is known to be a ...
AbstractThe maximal unramified extensions of the imaginary quadratic number fields with class number...
AbstractLet k be an algebraic number field containing a primitive m th root of unity. An extension K...
Using class field theory, we prove a restriction on the intersection of the maximal abelian extensio...
AbstractFor real biquadratic fields, the class number formula shows that in many cases the Hilbert c...
International audienceWe present an algorithm to compute a higher dimensional analogue of modular po...
AbstractLetkbe a totally real number field of degreenoverQwith ring of integers Ok. The Hilbert modu...
Soit (K, Φ) une paire CM quartique primitive et (Kr , Φr ) son réflexe. Dans un article de 1962 inti...
AbstractLet K be an unramified abelian extension of a number field F with Galois group G. We conside...
AbstractLetkbe an algebraic number field. We describe a procedure for computing the Hilbert class fi...
Let K be a quartic CM field, that is, a totally imaginary quadratic extension of a real quadratic nu...
Let K be a quartic CM field, that is, a totally imaginary quadratic extension of a real quadratic nu...
AbstractA number field K is called a Hilbert–Speiser field if for each tamely ramified finite abelia...
Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelon...
Soit (K, Φ) une paire CM quartique primitive et (Kr , Φr ) son réflexe. Dans un article de 1962 inti...
The determination of the class number of totally real fields of large discriminant is known to be a ...
AbstractThe maximal unramified extensions of the imaginary quadratic number fields with class number...
AbstractLet k be an algebraic number field containing a primitive m th root of unity. An extension K...
Using class field theory, we prove a restriction on the intersection of the maximal abelian extensio...
AbstractFor real biquadratic fields, the class number formula shows that in many cases the Hilbert c...
International audienceWe present an algorithm to compute a higher dimensional analogue of modular po...
AbstractLetkbe a totally real number field of degreenoverQwith ring of integers Ok. The Hilbert modu...
Soit (K, Φ) une paire CM quartique primitive et (Kr , Φr ) son réflexe. Dans un article de 1962 inti...
AbstractLet K be an unramified abelian extension of a number field F with Galois group G. We conside...