AbstractVarious local connectedness and compactness properties of topological spaces are characterized by higher degrees of distributivity for their lattices of open (or closed) sets, and conversely. For example, those topological spaces for which not only the lattice of open sets but also that of closed sets is a frame, are described by the existence of web neighborhood bases, where webs are certain specific path-connected sets. Such spaces are called web spaces. The even better linked wide web spaces are characterized by F-distributivity of their topologies, and the worldwide web spaces (or C-spaces) by complete distributivity of their topologies. Similarly, strongly locally connected spaces and locally hypercompact spaces are characteriz...