AbstractLet (Xn) be a positive recurrent Harris chain on a general state space, with invariant probability measure π. We give necessary and sufficient conditions for the geometric convergence of λPnf towards its limit π(f), and show that when such convergence happens it is, in fact, uniform over f and in L1(π)-norm. As a corollary we obtain that, when (Xn) is geometrically ergodic, ∝ π(dx)‖Pn(x,·)-π‖ converges to zero geometrically fast. We also characterize the geometric ergodicity of (Xn) in terms of hitting time distributions. We show that here the so-called small sets act like individual points of a countable state space chain. We give a test function criterion for geometric ergodicity and apply it to random walks on the positive half l...