AbstractWe give interpretations for quotient Jν+1Jν of q-Bessel functions. These q-analogs are related to generating function of weighted complete binary trees according to the number of leaves and to multichains on a partially ordered set, corresponding to weighted paths in the plane.RésuméNous donnons des interprétations combinatoires du rapport Jν+1Jν de q-fonctions de Bessel. Ces q-analogues énumèrent des classes d'arbres binaires complets valués suivant le nombre de feuilles et des multichaînes d'un ensemble partiellement ordonné, correspondant à des chemins valués dans le plan
En 2010 Chung, Graham et Knuth ont démontré une remarquable identité symétrique sur les nombres eulé...
17 pages, 2 figuresInternational audienceOne considers weighted sums over points of lattice polytope...
AbstractAn identity involving basic Bessel functions and Al-Salam-Chihara polynomials is proved for ...
AbstractWe give interpretations for quotient Jν+1Jν of q-Bessel functions. These q-analogs are relat...
AbstractIn this note, we show that the inverse of the q-analogues of Bessel function qJ0 and the quo...
RésuméLes derniers résultats concernant l'énumération des polyominos parallélogrammes ([4, 5, 8, 9, ...
AbstractWe give a bijection between some valuated complete binary trees according to the number of l...
AbstractThe object of this paper is to generalize some recent results about enumeration of parallelo...
AbstractWe use biinfinite Toeplitz matrix analogues of classical and q-binomial identities in a comm...
AbstractThere are two q-analogues for the exponential function, and each of them appears naturally a...
I have developed a tiling interpretation of the q-binomial coefficients. The aim of this thesis is t...
AbstractDerivatives with respect to order ν and argument x of the ratio Jν(x)/Jν+1(x) of Bessel func...
AbstractIn this paper we study the q-analogue of the jα Bessel function (see (1)) which results afte...
The Catalan numbers form one of the more frequently encountered counting sequences in combinatorics....
AbstractWe establish a large n complete asymptotic expansion for q-Laguerre polynomials and a comple...
En 2010 Chung, Graham et Knuth ont démontré une remarquable identité symétrique sur les nombres eulé...
17 pages, 2 figuresInternational audienceOne considers weighted sums over points of lattice polytope...
AbstractAn identity involving basic Bessel functions and Al-Salam-Chihara polynomials is proved for ...
AbstractWe give interpretations for quotient Jν+1Jν of q-Bessel functions. These q-analogs are relat...
AbstractIn this note, we show that the inverse of the q-analogues of Bessel function qJ0 and the quo...
RésuméLes derniers résultats concernant l'énumération des polyominos parallélogrammes ([4, 5, 8, 9, ...
AbstractWe give a bijection between some valuated complete binary trees according to the number of l...
AbstractThe object of this paper is to generalize some recent results about enumeration of parallelo...
AbstractWe use biinfinite Toeplitz matrix analogues of classical and q-binomial identities in a comm...
AbstractThere are two q-analogues for the exponential function, and each of them appears naturally a...
I have developed a tiling interpretation of the q-binomial coefficients. The aim of this thesis is t...
AbstractDerivatives with respect to order ν and argument x of the ratio Jν(x)/Jν+1(x) of Bessel func...
AbstractIn this paper we study the q-analogue of the jα Bessel function (see (1)) which results afte...
The Catalan numbers form one of the more frequently encountered counting sequences in combinatorics....
AbstractWe establish a large n complete asymptotic expansion for q-Laguerre polynomials and a comple...
En 2010 Chung, Graham et Knuth ont démontré une remarquable identité symétrique sur les nombres eulé...
17 pages, 2 figuresInternational audienceOne considers weighted sums over points of lattice polytope...
AbstractAn identity involving basic Bessel functions and Al-Salam-Chihara polynomials is proved for ...