AbstractIn the Type-2 Theory of Effectivity, one considers representations of topological spaces in which infinite words are used as “names” for the elements they represent. Given such a representation, we show that probabilistic processes on infinite words, under which each successive symbol is determined by a finite probabilistic choice, generate Borel probability measures on the represented space. Conversely, for several well-behaved types of space, every Borel probability measure is represented by a corresponding probabilistic process. Accordingly, we consider probabilistic processes as providing “probabilistic names” for Borel probability measures. We show that integration is computable with respect to the induced representation of mea...