AbstractWe present a dynamic comparison-based search structure that supports insertions, deletions, and searches within the unified bound. The unified bound specifies that it is quick to access an element that is near a recently accessed element. More precisely, if w(y) distinct elements have been accessed since the last access to element y, and d(x,y) denotes the rank distance between x and y among the current set of elements, then the amortized cost to access element x is O(minylog[w(y)+d(x,y)+2]). This property generalizes the working-set and dynamic-finger properties of splay trees
Answering connectivity queries is fundamental to fully dynamic graphs where edges and vertices are i...
In 1985, Sleator and Tarjan introduced the splay tree, a self-adjusting binary search tree algorithm...
AbstractIn this paper we propose dynamic algorithms for maintaining a breadth-first search tree from...
AbstractWe present a dynamic comparison-based search structure that supports insertions, deletions, ...
The dynamic optimality conjecture is perhaps the most fundamental open question about binary search ...
Binary search trees (BSTs) with rotations can adapt to various kinds of structure in search sequence...
It is shown that the online binary search tree data structure GreedyASS performs asymptotically as w...
The unified property roughly states that searching for an element is fast when the current access is...
An optimal binary search tree for an access sequence on elements is a static tree that minimizes the...
An optimal binary search tree for an access sequence on elements is a static tree that minimizes the...
Several new data structures are presented for dictionaries containing elements with different weight...
The working-set bound [Sleator and Tarjan in J. ACM 32(3), 652-686, 1985] roughly states that search...
We consider search trees under time-varying access probabilities. Let $S = \{ B_1 , \cdots ,B_n \} $...
In this paper we propose dynamic algorithms for maintaining a breadth-first search tree from a given...
splay trees are competitive (within a constant competitive factor) among the class of all binary sea...
Answering connectivity queries is fundamental to fully dynamic graphs where edges and vertices are i...
In 1985, Sleator and Tarjan introduced the splay tree, a self-adjusting binary search tree algorithm...
AbstractIn this paper we propose dynamic algorithms for maintaining a breadth-first search tree from...
AbstractWe present a dynamic comparison-based search structure that supports insertions, deletions, ...
The dynamic optimality conjecture is perhaps the most fundamental open question about binary search ...
Binary search trees (BSTs) with rotations can adapt to various kinds of structure in search sequence...
It is shown that the online binary search tree data structure GreedyASS performs asymptotically as w...
The unified property roughly states that searching for an element is fast when the current access is...
An optimal binary search tree for an access sequence on elements is a static tree that minimizes the...
An optimal binary search tree for an access sequence on elements is a static tree that minimizes the...
Several new data structures are presented for dictionaries containing elements with different weight...
The working-set bound [Sleator and Tarjan in J. ACM 32(3), 652-686, 1985] roughly states that search...
We consider search trees under time-varying access probabilities. Let $S = \{ B_1 , \cdots ,B_n \} $...
In this paper we propose dynamic algorithms for maintaining a breadth-first search tree from a given...
splay trees are competitive (within a constant competitive factor) among the class of all binary sea...
Answering connectivity queries is fundamental to fully dynamic graphs where edges and vertices are i...
In 1985, Sleator and Tarjan introduced the splay tree, a self-adjusting binary search tree algorithm...
AbstractIn this paper we propose dynamic algorithms for maintaining a breadth-first search tree from...