AbstractComparison arguments are applied to derive decreasing sequences of upper solutions and increasing sequences of lower solutions for a class of nonlinear elliptic equations. The monotonicity of the two sequences is proven. These polynomial sequences are obtained by applying new algorithms and solving linear differential equations. The obtained upper and lower solutions are analytic and have closed forms. Different examples are presented to explore the effectiveness of the new algorithms. The presented ideas and algorithms can be extended to deal with different classes of equations
AbstractIn this paper we develop the monotone method in the presence of lower and upper solutions fo...
AbstractIn this paper we develop the monotone method in the presence of lower and upper solutions fo...
We develop monotone iterative technique for a system of semilinear elliptic boundary value problems ...
AbstractComparison arguments are applied to derive decreasing sequences of upper solutions and incre...
AbstractMotivated by the application to some degenerate elliptic problems (here, degenerate means no...
AbstractAn algorithm for constructing two sequences of successive approximations of the solution of ...
AbstractMotivated by the application to some degenerate elliptic problems (here, degenerate means no...
AbstractWe report on a result of upper–lower solutions for nonlinear elliptic systems without the as...
AbstractThe method of lower and upper solutions combined with monotone iterative techniques is used ...
SynopsisBy a new method it is proved that a non-linear elliptic boundary value problem of rather gen...
AbstractThe aim of this paper is to show the existence and uniqueness of a solution for a class of 2...
SynopsisBy a new method it is proved that a non-linear elliptic boundary value problem of rather gen...
AbstractSufficient conditions are given for the existence of a solution of a fourth order nonlinear ...
Employing the method of upper and lower solutions and monotone iterative technique, existence of ext...
AbstractWe introduce a generalized upper and lower solutions method for the solvability of first-ord...
AbstractIn this paper we develop the monotone method in the presence of lower and upper solutions fo...
AbstractIn this paper we develop the monotone method in the presence of lower and upper solutions fo...
We develop monotone iterative technique for a system of semilinear elliptic boundary value problems ...
AbstractComparison arguments are applied to derive decreasing sequences of upper solutions and incre...
AbstractMotivated by the application to some degenerate elliptic problems (here, degenerate means no...
AbstractAn algorithm for constructing two sequences of successive approximations of the solution of ...
AbstractMotivated by the application to some degenerate elliptic problems (here, degenerate means no...
AbstractWe report on a result of upper–lower solutions for nonlinear elliptic systems without the as...
AbstractThe method of lower and upper solutions combined with monotone iterative techniques is used ...
SynopsisBy a new method it is proved that a non-linear elliptic boundary value problem of rather gen...
AbstractThe aim of this paper is to show the existence and uniqueness of a solution for a class of 2...
SynopsisBy a new method it is proved that a non-linear elliptic boundary value problem of rather gen...
AbstractSufficient conditions are given for the existence of a solution of a fourth order nonlinear ...
Employing the method of upper and lower solutions and monotone iterative technique, existence of ext...
AbstractWe introduce a generalized upper and lower solutions method for the solvability of first-ord...
AbstractIn this paper we develop the monotone method in the presence of lower and upper solutions fo...
AbstractIn this paper we develop the monotone method in the presence of lower and upper solutions fo...
We develop monotone iterative technique for a system of semilinear elliptic boundary value problems ...