AbstractThe following infinite game G was investigated in [5]: Let B be a Boolean algebra. Two players, White and Black, take turns to choose successively a sequenc
In this paper, we present a probabilistic analysis of Boolean games. We consider the class of Boolea...
Boolean games are a framework for reasoning about the rational behavior of agents whose goals are fo...
We consider two-player zero-sum games with winning objectives beyond regular languages, expressed as...
AbstractThe following infinite game G was investigated in [5]: Let B be a Boolean algebra. Two playe...
Abstract. The games Gη1 (κ) and Gη<λ(κ) are played by two players in η+-complete and max(η+, λ)-c...
The method of forcing is widely used in set theory to obtain various consistency proofs. Complete Bo...
algebra B. Games of type (κ, λ, µ) are played in κ-many moves: First White chooses p ∈ B+. In α-th m...
The method of forcing is widely used in set theory to obtain various consistency proofs. Complete Bo...
The method of forcing is widely used in set theory to obtain various consistency proofs. Complete Bo...
Game theory is a widely used formal model for studying strategical interactions between agents. Bool...
AbstractWe discuss the relationship between various weak distributive laws and games in Boolean alge...
AbstractWe define an infinite class of 2-pile subtraction games, where the amount that can be subtra...
AbstractWe obtain a simple, purely game-theoretic characterization of Boolean grammars [A. Okhotin, ...
AbstractWe study the determinacy of the game Gκ(A) introduced in Fuchino, Koppelberg and Shelah (to ...
AbstractBoolean games are a logical setting for representing static games in a succinct way, taking ...
In this paper, we present a probabilistic analysis of Boolean games. We consider the class of Boolea...
Boolean games are a framework for reasoning about the rational behavior of agents whose goals are fo...
We consider two-player zero-sum games with winning objectives beyond regular languages, expressed as...
AbstractThe following infinite game G was investigated in [5]: Let B be a Boolean algebra. Two playe...
Abstract. The games Gη1 (κ) and Gη<λ(κ) are played by two players in η+-complete and max(η+, λ)-c...
The method of forcing is widely used in set theory to obtain various consistency proofs. Complete Bo...
algebra B. Games of type (κ, λ, µ) are played in κ-many moves: First White chooses p ∈ B+. In α-th m...
The method of forcing is widely used in set theory to obtain various consistency proofs. Complete Bo...
The method of forcing is widely used in set theory to obtain various consistency proofs. Complete Bo...
Game theory is a widely used formal model for studying strategical interactions between agents. Bool...
AbstractWe discuss the relationship between various weak distributive laws and games in Boolean alge...
AbstractWe define an infinite class of 2-pile subtraction games, where the amount that can be subtra...
AbstractWe obtain a simple, purely game-theoretic characterization of Boolean grammars [A. Okhotin, ...
AbstractWe study the determinacy of the game Gκ(A) introduced in Fuchino, Koppelberg and Shelah (to ...
AbstractBoolean games are a logical setting for representing static games in a succinct way, taking ...
In this paper, we present a probabilistic analysis of Boolean games. We consider the class of Boolea...
Boolean games are a framework for reasoning about the rational behavior of agents whose goals are fo...
We consider two-player zero-sum games with winning objectives beyond regular languages, expressed as...