AbstractWe study strict local martingales via h-transforms, a method which first appeared in work by Delbaen and Schachermayer. We show that strict local martingales arise whenever there is a consistent family of change of measures where the two measures are not equivalent to one another. Several old and new strict local martingales are identified. We treat examples of diffusions with various boundary behavior, size-bias sampling of diffusion paths, and non-colliding diffusions. A multidimensional generalization to conformal strict local martingales is achieved through Kelvin transform. As curious examples of non-standard behavior, we show by various examples that strict local martingales do not behave uniformly when the function (x−K)+ is ...
AbstractRecently, a new approach in the fine analysis of sample paths of stochastic processes has be...
Abstract. We investigate the existence of an absolutely continuous martingale measure. For continuou...
The stochastic exponential Zt=expMt−M0−(12)MMt of a continuous local martingale M is itself a conti...
We show that a continuous local martingale is a strict local martingale if its supremum process is n...
University of Technology, Sydney. Faculty of Business.It is becoming increasingly clear that strict ...
This paper deals with asset price bubbles modeled by strict local martingales. With any strict local...
We show that a continuous local martingale is a strict local martingale if its supremum process is n...
For a real-valued one dimensional diffusive strict local martingale,, we provide a set of smooth fun...
It is often important, in applications of stochastic calculus to financial modelling, to know whethe...
Many results in stochastic analysis and mathematical finance involve local martingales. However, spe...
In this thesis, we study the strict local martingale property of solutions of various types of stoch...
Itô’s integrated formula for strict local martingales with jumps. Oleksandr Chybiryakov∗ This note p...
For any positive diffusion with minimal regularity, there exists a semimartingale with uniformly clo...
We consider implied volatilities in asset pricing models, where the discounted underlying is a stric...
Abstract The context for this article is a continuous financial market consisting of a risk-free sav...
AbstractRecently, a new approach in the fine analysis of sample paths of stochastic processes has be...
Abstract. We investigate the existence of an absolutely continuous martingale measure. For continuou...
The stochastic exponential Zt=expMt−M0−(12)MMt of a continuous local martingale M is itself a conti...
We show that a continuous local martingale is a strict local martingale if its supremum process is n...
University of Technology, Sydney. Faculty of Business.It is becoming increasingly clear that strict ...
This paper deals with asset price bubbles modeled by strict local martingales. With any strict local...
We show that a continuous local martingale is a strict local martingale if its supremum process is n...
For a real-valued one dimensional diffusive strict local martingale,, we provide a set of smooth fun...
It is often important, in applications of stochastic calculus to financial modelling, to know whethe...
Many results in stochastic analysis and mathematical finance involve local martingales. However, spe...
In this thesis, we study the strict local martingale property of solutions of various types of stoch...
Itô’s integrated formula for strict local martingales with jumps. Oleksandr Chybiryakov∗ This note p...
For any positive diffusion with minimal regularity, there exists a semimartingale with uniformly clo...
We consider implied volatilities in asset pricing models, where the discounted underlying is a stric...
Abstract The context for this article is a continuous financial market consisting of a risk-free sav...
AbstractRecently, a new approach in the fine analysis of sample paths of stochastic processes has be...
Abstract. We investigate the existence of an absolutely continuous martingale measure. For continuou...
The stochastic exponential Zt=expMt−M0−(12)MMt of a continuous local martingale M is itself a conti...