AbstractWe prove that the admissibility of any pair of vector-valued Schäffer function spaces (satisfying a very general technical condition) implies the existence of a “no past” exponential dichotomy for an exponentially bounded, strongly continuous cocycle (over a semiflow). Roughly speaking the class of Schäffer function spaces consists in all function spaces which are invariant under the right-shift and therefore our approach addresses most of the possible pairs of admissible spaces. Complete characterizations for the exponential dichotomy of cocycles are also obtained. Moreover, we involve a concept of a “no past” exponential dichotomy for cocycles weaker than the classical concept defined by Sacker and Sell (1994) in [23]. Our definit...