AbstractThe introduction of a ring of arginine residues near the constriction in the transmembrane β barrel of the staphylococcal α-hemolysin heptamer yielded a pore that could be almost completely blocked by phosphate anions at pH 7.5. Block did not occur with other oxyanions, including nitrate, sulfate, perchlorate, and citrate. Based on this finding, additional pores were engineered with high affinities for important cell signaling molecules, such as the Ca2+-mobilizing second messenger inositol 1,4,5-trisphosphate (IP3), that contain phosphate groups. One of these engineered pores, PRR-2, provides a ring of fourteen arginines that project into the lumen of the transmembrane barrel. Remarkably, PRR-2 bound IP3 with low nanomolar affinity...