AbstractWe develop direct and inverse spectral analysis for finite and semi-infinite non-self-adjoint Jacobi matrices with a rank-one imaginary part. It is shown that given a set of n not necessarily distinct nonreal numbers in the open upper (lower) half-plane uniquely determines an n×n Jacobi matrix with a rank-one imaginary part having those numbers as its eigenvalues counting algebraic multiplicity. Algorithms of reconstruction for such finite Jacobi matrices are presented. A new model complementing the well-known Livsic triangular model for bounded linear operators with a rank-one imaginary part is obtained. It turns out that the model operator is a non-self-adjoint Jacobi matrix. We show that any bounded, prime, non-self-adjoint linea...