AbstractWith each polynomial p of degree n whose roots lie inside the unit disc we may associate the n-dimensional space of all solutions of the recurrence relation whose coefficients are those of p (considered as a subspace of 12). The main result consists in establishing a close relation between the Bezoutian of two such polynomials (of the same degree) and the projection operator onto one of the corresponding spaces along the complement of the other. The note forms a loose continuation of the author's investigations of the infinite companion matrix—the generating function of the infinite companion matrix of a polynomial p appears thus as a particular case; the corresponding Bezoutian is that of the pair p and zn
AbstractIt is shown how the Bezoutian and the resultant matrix evolved from Euler's work in eliminat...
Abstract. We prove a quadratic expression for the Bezoutian of two univariate polynomials in terms o...
AbstractThe Vandermonde matrix reduces by congruence the Bezoutian matrix when the zeros of the high...
AbstractWith each polynomial p of degree n whose roots lie inside the unit disc we may associate the...
AbstractA systematic account is given of the properties and applications of the notion of infinite c...
AbstractA formula of Barnett type relating the Bezoutian B(f,g) to the Hankel matrix H(g/f) is exten...
AbstractThe following commutator identity is proved:[u(S∗), v(S)] = [v1(S∗), u1(S)]. Here S is the n...
We give a self-contained proof that the nullity of the Bezoutian matrix associated with a pair of po...
AbstractThe Bézoutian B of two polynomial matrices can be described as a solution of a linear matrix...
AbstractWe apply a result of Tremon to show that any two Banach-space projections of the same finite...
Abstract. We give a self-contained proof that the nullity of the Bezoutian matrix associ-ated with a...
AbstractA natural generalization of the classical Bezout matrix of two polynomials is introduced for...
AbstractA nonsymmetric analogue of a Gram matrix is used to represent the infinite companion matrix ...
AbstractA generalized Bezout operator (Bezoutian) for a pair of operator polynomials is introduced a...
AbstractThe Bezoutian B of a quadruple (F, G; U, D) of polynomial matrices is studied. It is shown t...
AbstractIt is shown how the Bezoutian and the resultant matrix evolved from Euler's work in eliminat...
Abstract. We prove a quadratic expression for the Bezoutian of two univariate polynomials in terms o...
AbstractThe Vandermonde matrix reduces by congruence the Bezoutian matrix when the zeros of the high...
AbstractWith each polynomial p of degree n whose roots lie inside the unit disc we may associate the...
AbstractA systematic account is given of the properties and applications of the notion of infinite c...
AbstractA formula of Barnett type relating the Bezoutian B(f,g) to the Hankel matrix H(g/f) is exten...
AbstractThe following commutator identity is proved:[u(S∗), v(S)] = [v1(S∗), u1(S)]. Here S is the n...
We give a self-contained proof that the nullity of the Bezoutian matrix associated with a pair of po...
AbstractThe Bézoutian B of two polynomial matrices can be described as a solution of a linear matrix...
AbstractWe apply a result of Tremon to show that any two Banach-space projections of the same finite...
Abstract. We give a self-contained proof that the nullity of the Bezoutian matrix associ-ated with a...
AbstractA natural generalization of the classical Bezout matrix of two polynomials is introduced for...
AbstractA nonsymmetric analogue of a Gram matrix is used to represent the infinite companion matrix ...
AbstractA generalized Bezout operator (Bezoutian) for a pair of operator polynomials is introduced a...
AbstractThe Bezoutian B of a quadruple (F, G; U, D) of polynomial matrices is studied. It is shown t...
AbstractIt is shown how the Bezoutian and the resultant matrix evolved from Euler's work in eliminat...
Abstract. We prove a quadratic expression for the Bezoutian of two univariate polynomials in terms o...
AbstractThe Vandermonde matrix reduces by congruence the Bezoutian matrix when the zeros of the high...