AbstractStress redistribution caused by damage onset and the subsequent local softening plays an important role in determining the ultimate tensile strength of a cellular structure. The formation of damage process zones with struts dissipating a finite amount of fracture energy will require the macroscopic stress to be increased in order to continue structural damage. The goal of this paper is to investigate the influence of the fracture energy of the solid on the tensile fracture strength and the strain to fracture in quasi-brittle two-dimensional foams using a microstructural model. We analyze the mesoscopic damage and failure mechanisms in uniaxial tension. Relative density, strut cross-sectional profile, solid’s fracture strain, and fra...