AbstractWhen applying any technique of multidimensional models to problems of practice, one always has to cope with two problems: the necessity to represent the models with a ”reasonable” number of parameters and to have sufficiently efficient computational procedures at one’s disposal. When considering graphical Markov models in probability theory, both of these conditions are fulfilled; various computational procedures for decomposable models are based on the ideas of local computations, whose theoretical foundations were laid by Lauritzen and Spiegelhalter.The presented contribution studies a possibility of transferring these ideas from probability theory into Dempster-Shafer theory of evidence. The paper recalls decomposable models, dis...