AbstractRecently Lewis Bowen introduced a notion of entropy for measure-preserving actions of countable sofic groups admitting a generating measurable partition with finite entropy; and then David Kerr and Hanfeng Li developed an operator-algebraic approach to actions of countable sofic groups not only on a standard probability space but also on a compact metric space, and established the global variational principle concerning measure-theoretic and topological entropy in this sofic context. By localizing these two kinds of entropy, in this paper we prove a local version of the global variational principle for any finite open cover of the space, and show that these local measure-theoretic and topological entropies coincide with their classi...