AbstractMany random combinatorial objects have a component structure whose joint distribution is equal to that of a process of mutually independent random variables, conditioned on the value of a weighted sum of the variables. It is interesting to compare the combinatorial structure directly to the independent discrete process, without renormalizing. The quality of approximation can often be conveniently quantified in terms of total variation distance, for functionals which observe part, but not all, of the combinatorial and independent processes. Among the examples are combinatorial assemblies (e.g., permutations, random mapping functions, and partitions of a set), multisets (e.g., polynomials over a finite field, mapping patterns and part...