AbstractWe discuss a maximum likelihood procedure for estimating parameters in possibly noncausal autoregressive processes driven by i.i.d. non-Gaussian noise. Under appropriate conditions, estimates of the parameters that are solutions to the likelihood equations exist and are asymptotically normal. The estimation procedure is illustrated with a simulation study for AR(2) processes
We consider an approximate maximum likelihood algorithm for estimating parameters of possibly non-ca...
The paper considers the problem of estimating the autoregressive parameter in the first-order autore...
This paper is concerned with univariate noncausal autoregressive models and their potential usefulne...
AbstractWe discuss a maximum likelihood procedure for estimating parameters in possibly noncausal au...
We consider maximum likelihood estimation for both causal and noncausal autoregressive time series p...
The problem of estimating the parameters of a non-Gaussian autoregressive process is addressed. Depa...
The problem of estimating the parameters of a non-Gaussian autoregressive process is addressed. Depa...
AbstractAn approximate maximum likelihood procedure is proposed for the estimation of parameters in ...
The problem of estimating the parameters of a non-Gaussian autoregressive process is addressed. Depa...
A technique for the estimation of autoregressive filter parameters of a non-Gaussian autoregressive ...
A technique for the estimation of autoregressive filter parameters of a non-Gaussian autoregressive ...
A technique for the estimation of autoregressive filter parameters of a non-Gaussian autoregressive ...
The paper considers the estimation problem of the autoregressive parameter in th
We investigate the estimation of parameters in the random coefficient autoregressive (RCA) model X ...
The paper considers the problem of estimating the autoregressive parameter in the first-order autore...
We consider an approximate maximum likelihood algorithm for estimating parameters of possibly non-ca...
The paper considers the problem of estimating the autoregressive parameter in the first-order autore...
This paper is concerned with univariate noncausal autoregressive models and their potential usefulne...
AbstractWe discuss a maximum likelihood procedure for estimating parameters in possibly noncausal au...
We consider maximum likelihood estimation for both causal and noncausal autoregressive time series p...
The problem of estimating the parameters of a non-Gaussian autoregressive process is addressed. Depa...
The problem of estimating the parameters of a non-Gaussian autoregressive process is addressed. Depa...
AbstractAn approximate maximum likelihood procedure is proposed for the estimation of parameters in ...
The problem of estimating the parameters of a non-Gaussian autoregressive process is addressed. Depa...
A technique for the estimation of autoregressive filter parameters of a non-Gaussian autoregressive ...
A technique for the estimation of autoregressive filter parameters of a non-Gaussian autoregressive ...
A technique for the estimation of autoregressive filter parameters of a non-Gaussian autoregressive ...
The paper considers the estimation problem of the autoregressive parameter in th
We investigate the estimation of parameters in the random coefficient autoregressive (RCA) model X ...
The paper considers the problem of estimating the autoregressive parameter in the first-order autore...
We consider an approximate maximum likelihood algorithm for estimating parameters of possibly non-ca...
The paper considers the problem of estimating the autoregressive parameter in the first-order autore...
This paper is concerned with univariate noncausal autoregressive models and their potential usefulne...