AbstractKerov polynomials express the normalized characters of irreducible representations of the symmetric group, evaluated on a cycle, as polynomials in the “free cumulants” of the associated Young diagram. We present two positivity conjectures for their coefficients. The latter are stronger than the positivity conjecture of Kerov–Biane, recently proved by Féray
33 pages, 13 figuresInternational audienceKerov's polynomials give irreducible character values in t...
Cette thèse concerne les valeurs du caractère irréductible (renormalisé) comme fonction de la partit...
AbstractIn Stanley [R.P. Stanley, Irreducible symmetric group characters of rectangular shape, Sém. ...
International audienceKerov's polynomials give irreducible character values of the symmetric group i...
Abstract. Kerov’s polynomials give irreducible character values of the symmetric group in term of th...
AbstractWe find an explicit combinatorial interpretation of the coefficients of Kerov character poly...
AbstractKerov polynomials express the normalized characters of irreducible representations of the sy...
Kerov's polynomials give irreducible character values of the symmetric group in term of the free cum...
International audienceKerov's polynomials give irreducible character values of the symmetric group i...
International audienceFree cumulants are nice and useful functionals of the shape of a Young diagram...
AbstractWe study the coefficients in the expansion of Jack polynomials in terms of power sums. We ex...
AbstractIn Stanley [R.P. Stanley, Irreducible symmetric group characters of rectangular shape, Sém. ...
In this paper, we study relationships between the normalized characters of symmetric groups and the ...
We show that the order on probability measures, inherited from the dominance order on the Young diag...
33 pages, 13 figuresInternational audienceKerov's polynomials give irreducible character values in t...
33 pages, 13 figuresInternational audienceKerov's polynomials give irreducible character values in t...
Cette thèse concerne les valeurs du caractère irréductible (renormalisé) comme fonction de la partit...
AbstractIn Stanley [R.P. Stanley, Irreducible symmetric group characters of rectangular shape, Sém. ...
International audienceKerov's polynomials give irreducible character values of the symmetric group i...
Abstract. Kerov’s polynomials give irreducible character values of the symmetric group in term of th...
AbstractWe find an explicit combinatorial interpretation of the coefficients of Kerov character poly...
AbstractKerov polynomials express the normalized characters of irreducible representations of the sy...
Kerov's polynomials give irreducible character values of the symmetric group in term of the free cum...
International audienceKerov's polynomials give irreducible character values of the symmetric group i...
International audienceFree cumulants are nice and useful functionals of the shape of a Young diagram...
AbstractWe study the coefficients in the expansion of Jack polynomials in terms of power sums. We ex...
AbstractIn Stanley [R.P. Stanley, Irreducible symmetric group characters of rectangular shape, Sém. ...
In this paper, we study relationships between the normalized characters of symmetric groups and the ...
We show that the order on probability measures, inherited from the dominance order on the Young diag...
33 pages, 13 figuresInternational audienceKerov's polynomials give irreducible character values in t...
33 pages, 13 figuresInternational audienceKerov's polynomials give irreducible character values in t...
Cette thèse concerne les valeurs du caractère irréductible (renormalisé) comme fonction de la partit...
AbstractIn Stanley [R.P. Stanley, Irreducible symmetric group characters of rectangular shape, Sém. ...