AbstractThe paper studies the existence of closed invariant subspaces for a Lie algebra L of bounded operators on an infinite-dimensional Banach space X. It is assumed that L contains a Lie subalgebra L0 that has a non-trivial closed invariant subspace in X of finite codimension or dimension. It is proved that L itself has a non-trivial closed invariant subspace in the following two cases: (1) L0 has finite codimension in L and there are Lie subalgebras L0=L0⊂L1⊂⋯⊂Lp=L such that Li+1=Li+[Li,Li+1] for all i; (2) L0 is a Lie ideal of L and dim(L0)=∞. These results are applied to the problem of the existence of non-trivial closed Lie ideals and closed characteristic Lie ideals in an infinite-dimensional Banach Lie algebra L that contains a non...