AbstractThe pi-calculus and its many variations have received much attention in the literature. We discuss the standard early labelled transition system (lts) and outline an approach which decomposes the system into two components, one of which is presented in detail. The advantages of using the decomposition include a more complete understanding of the treatment of bound outputs in Pi as well as an lts which is more robust with respect to the addition and removal of language features. The present paper serves as an overview of some of the techniques involved and some of the goals of the ongoing work
Formalising the π-calculus is an illuminating test of the expressiveness of logical frameworks and ...
Abramsky’s logical formulation of domain theory is extended to encompass the domain theoretic model ...
Recent work has shown that presheaf categories provide a general model of concurrency, with an inbui...
The pi-calculus and its many variations have received much attention in the literature. We discuss t...
AbstractThe pi-calculus and its many variations have received much attention in the literature. We d...
We re-examine the standard structural operational semantics of the π-calculus with the view that bot...
International audienceThe relations between the pi-calculus and logic have been less extensively stu...
Some alternative characterizations of late full congruences, either strong or weak, are presented. T...
A new formulation of the pi-calculus, where name instantiation is handled explicitly via the introdu...
Recent work has shown that presheaf categories provide a general model of concurrency, with an inbui...
We use symbolic transition systems as a basis for providing the pi-calculus with an alternative sema...
The behaviours of concurrent processes can be expressed using process calculi, which are simple form...
The behaviours of concurrent processes can be expressed using process calculi, which are simple form...
The behaviours of concurrent processes can be expressed using process calculi, which are simple form...
Abramsky’s logical formulation of domain theory is extended to encompass the domain theoretic model ...
Formalising the π-calculus is an illuminating test of the expressiveness of logical frameworks and ...
Abramsky’s logical formulation of domain theory is extended to encompass the domain theoretic model ...
Recent work has shown that presheaf categories provide a general model of concurrency, with an inbui...
The pi-calculus and its many variations have received much attention in the literature. We discuss t...
AbstractThe pi-calculus and its many variations have received much attention in the literature. We d...
We re-examine the standard structural operational semantics of the π-calculus with the view that bot...
International audienceThe relations between the pi-calculus and logic have been less extensively stu...
Some alternative characterizations of late full congruences, either strong or weak, are presented. T...
A new formulation of the pi-calculus, where name instantiation is handled explicitly via the introdu...
Recent work has shown that presheaf categories provide a general model of concurrency, with an inbui...
We use symbolic transition systems as a basis for providing the pi-calculus with an alternative sema...
The behaviours of concurrent processes can be expressed using process calculi, which are simple form...
The behaviours of concurrent processes can be expressed using process calculi, which are simple form...
The behaviours of concurrent processes can be expressed using process calculi, which are simple form...
Abramsky’s logical formulation of domain theory is extended to encompass the domain theoretic model ...
Formalising the π-calculus is an illuminating test of the expressiveness of logical frameworks and ...
Abramsky’s logical formulation of domain theory is extended to encompass the domain theoretic model ...
Recent work has shown that presheaf categories provide a general model of concurrency, with an inbui...